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What does the human planum temporale (PT) do?
This large region, which occupies the superior
temporal plane posterior to Heschl’s gyrus, is
generally agreed to represent auditory association
cortex. However, disagreement exists regarding its
anatomy [1] and structure–function relationships
[2–4]. In the left hemisphere, most definitions of
Wernicke’s area include part of PT [5] and, indeed, the
human PT has traditionally been viewed as a
language processor [2]. However, functional imaging
indicates that the PT processes diverse types of sound
(Fig. 1, Table 1). This article develops a functional
model to explain this.

The PT is concerned with analysis of sounds that
are spectrally and temporally complex, comprising
several component frequencies that change over time
(Fig. 2). Such sounds are common in nature. The brain
is continuously required to analyse these incoming
spectrotemporal patterns and to compare them with
those previously experienced, during the process
known as auditory scene analysis [6]. Such analysis
allows the identification and assignment of position to
a mixture of acoustic sources (sound objects) heard
simultaneously. This demands both segregation of the
spectrotemporal pattern associated with each sound
object and separation of each object from the
spectrotemporal effects of its location. We argue that
the PT solves this daunting computational problem.

Although mechanisms for the accurate
representation of incoming acoustic spectrotemporal
signals exist in the ascending auditory pathways and
primary auditory cortex (PAC) [7–9], it would be
surprising if a priori this system were sufficient for
auditory scene analysis. Even the discrimination 
of a single sound object from the effect of spatial

position (Fig. 3) requires learned information about
how the external ears filter sound signals arising in
different locations, in addition to accurate
representations of the sound waveform at the
eardrums. This demanding computation might be
achieved serially in the PT after initial processing in
PAC, using the modular architecture in the PT [10]
and inputs from other cortical areas [11–14].

Such computation would transform incoming
auditory patterns into information about acoustic
objects and position that could be used in other
cortical areas. In this model, the PT thus represents a
computational ‘hub’ that directs further processing in
other cortical regions, consistent with studies of the
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Fig. 1. The planum temporale (PT) as an anatomical and functional
hub. (a) Tilted axial section through the superior temporal plane of the
human brain. The PT lies posterior to Heschl’s gyrus (HG), the site of the
primary auditory cortex, and is contiguous posteriorly with the
parieto–temporal operculum (PTO). Ninety-five percent probability
maps for the boundaries of left and right PT in humans (derived from
Ref. [1]) are outlined in red. (b) Insets centred on left and right PT,
showing functional activation peaks within PT associated with different
types of complex sound processing (see Table 1). Symbols are
explained underneath. The functional relationships between the PT and
higher cortical areas that are coactivated in processing simple sound
patterns (green), music (yellow), speech (red) and auditory space (blue)
are indicated schematically. Arrows indicate postulated flow of
information from the PT to these higher areas; in many cases, however,
exchange of information is likely to be reciprocal. We propose a generic
computational mechanism within the PT for the analysis of
spectrotemporal pattern. Computation uses information about sound
objects derived from higher cortical areas linked to the PT, and the
output of the PT is used to update stored information in these same
areas. Abbreviations: IPL, inferior parietal lobe; MTG, middle temporal
gyrus; PTO, parieto–temporal operculum; STG, lateral superior
temporal gyrus; STS, superior temporal sulcus.
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Table 1. Functional imaging data on planum temporale (PT) involvement in different aspects of spectrotemporal pattern processinga

Principal contrast Side PT peak activation (mm) Regions activated concurrently Refs

x y z

Spatial analysis

Sound source rotation minus stationary sound object (fMRI) L –42 –34 4 Bilat. PTO, L IPL [16]
R 64 –24 12

Sound source rotation minus stationary sound object (PET) L –48 –32 8 Bilat. PTO, Bilat. Premotor Area [16]
R 60 –36 12

Simple sound patterns

Duration sequences minus silence L –66 –38 12 Cb, Bilat. HG, Bilat. STG, Bilat. IPL, Bilat. Frontal [38]
R 68 –26 2 Lobe

Harmonic complex minus pure tones L –54 –22 2 R HG, Bilat. STG [34]
R 66 –18 10

Frequency-modulated minus unmodulated tones L –64 –14 2 Bilat. HG, Bilat. STG [34]
R 56 –16 4

Amplitude-modulated minus unmodulated noise L –60 –28 8 Bilat. HG, L STS, L STG, L IPL [35]
R 62 –22 6

Spectral motion versus stationary stimuli L –66 –16 8 Bilat. STG [61]
R 62 –30 12

Spectrotemporal minus fixed external sound L –56 –32 12 Bilat. STG [16]
R 66 –24 12

Pitch sequences

Pitch sequences minus silence L –60 –28 6 Cb, Bilat. HG, Bilat. STG, Bilat. IPL, Bilat. Frontal [38]
R 66 –30 6 Lobe

Tone sequences minus words (active task) L –55 –31 17 [44]
Tone sequences minus noise L –59 –32 14 Bilat. STG, R STS [36]

R 48 –23 12
Environmental sounds

Passive listening minus rest L –56 –30 16 Bilat. HG, R Inf. Frontal Lobe, R Insula, R IPL [39]
Voices

Vocal minus non-vocal sounds L –40 –37 13 Bilat. STS, R MTG [40]
R 56 –30 6

Music

Deviant minus standard chords (pre-attentive) R 58 –24 8 R STG [62]
Melodies minus noise R 62 –25 3 R STG, R Fusiform Gyrus [41]
Listening to familiar songs minus visual baseline L –55 –18 5 Bilat. HG, Bilat. STG, Bilat. Frontal Lobe, L IPL, [63]

R 59 –23 6 R SMA
Maintenance of pitch while singing minus complex pitch R 51 –30 15 R HG, Bilat. Frontal Lobe, Bilat. Insula, Bilat. IPL, [64]
perception Bilat. Occipital Lobe, Cb

Musical imagery (imagining continuation of a tune minus R 56 –30 8 Bilat. Frontal Lobe, L SMA [42]
listening)

Speech and speech-like sounds

Speech minus noise L –58 –21 8 Bilat. STG, L MTG, L Inf. Frontal Lobe [65]
Speech minus complex non-speech L –64 –44 12 Bilat. MTG, Bilat. STG, R Inf. Frontal Lobe [46]
Speech minus tones L –44 –32 8 Bilat. MTG, Bilat. STG, R Insula [46]
Complex non-speech minus tones L –64 –24 4 Bilat. STG, R MTG [46]
Consonant–vowel syllables minus vowels L –48 –32 12 R STG, R STS [66]

R 44 –28 12
Unvoiced minus voiced consonants L –44 –28 12 L HG [66]
Verbal self-monitoring (reading aloud with distorted L –52 –36 16 L STS, R STG, L Insula [50]
feedback minus reading aloud)

Dichotic listening

Listening to dichotic minus diotic speech L –52 –30 13 Bilat. STG, Bilat. STS, Bilat. Inf. Frontal Lobe, R Insula [52]
Active listening

Active target detection minus passive listening L –58 –52 18 L STS, L IPL, L Frontal Lobe, L Thalamus, L Insula [51]
Cross-modal processing

Coherent visual motion minus stationary stimulus L –41 –30 12 Bilat. V5, Bilat. V3 [54]
Optical flow minus randomized optical motion R 57 –20 8
Lip-reading minus watching meaningless facial movements L –58 –28 3 L PTL, R IPL [56]

R 61 –22 13
Auditory plasticity

Sign language minus visual fixation in deaf subjects L –52 –38 12 R STG [57]
Post-training minus pre-training deactivation L –48 –48 12 Bilat. STG, Bilat. STS, R HG [58]

aAll local PT maxima fall within the 95% probability anatomical boundaries for human PT proposed by Westbury et al. [1]. Studies have been selected to illustrate the variety
of types of pattern processing in PT and the different cortical areas coactivated in each case. Abbreviations: Bilat., bilateral; Cb, cerebellum; HG, Heschl's gyrus; Inf., inferior;
IPL, inferior parietal lobe; L, left; MTG, middle temporal gyrus; PTL, posterior temporal lobe; PTO, parieto–temporal operculum; R, right; SMA, supplementary motor area;
STG, superior temporal gyrus; STS, superior temporal sulcus.
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cortical processing of language [15], auditory space
[16] and other types of pattern within complex sound
(Table 1, Fig. 1). Such a hub could access distinct
cortical mechanisms for sound-object identification
and localization [17–19] (Fig. 1).

The model: computational analysis of sound patterns

The segregation and matching of spectrotemporal
patterns could be achieved in the PT using similar
computational mechanisms and neuronal
architecture. In this scheme, the PT is a crucial
computational interface between incoming sound
patterns that are segregated in the PT, and the
previously stored patterns with which these are
matched. The output after such computation provides
information about the acoustic environment that is
not immediately available either in the acoustic input
or as a result of auditory processing before the PT.

Spectrotemporal analysis in the PT can be
considered over three different timespans. The first
corresponds to the segregation of simultaneous
spectrotemporal patterns, for example, when
multiple sound objects are presented. The second
corresponds to the segregation of spectrotemporal
patterns between successive time points during
analysis of the motion of sound objects in space, or
analysis of a succession of sounds in time. This
timescale corresponds to that of transient acoustic
‘memory’ suggested by human electrophysiology [20].
Finally, the PT might operate over longer timespans,
to effect matching of the incoming spectrotemporal
patterns with stored patterns or ‘templates’. The
timescale of PT computation need not bear a simple
relationship to the temporal structure of the acoustic
waveform represented in PAC. Depth-electrode
studies in humans suggest that rapid acoustic
temporal changes, such as voice-onset time, are less
clearly represented in the PT than in PAC [21,22],
consistent with the processing of stored
representations over hundreds of milliseconds rather
than the faithful temporal representation of the
incoming stimulus.

The analysis that we suggest might be achieved by
several different algorithms instantiated in a variety
of neural networks. Independent and dynamic
component analyses (ICA and DCA, respectively)
belong to this family of algorithms [23,24].
Essentially, these achieve separation of the
components of a mixture by assuming that these are
not correlated [25]. The segregation mechanisms that
we envisage could have some of the formal features of
ICA, because the auditory system operates under
similar constraints to those under which ICA was
developed. However, there are no grounds for
specifying one member of this family of algorithms, or
for suggesting equivalence between a specific
artificial neural network used for ICA and the actual
neural networks in the PT. Several neural network
configurations might achieve the same computational
result. We do, however, predict that the required
computation is likely to be performed by a neuronal
population within the PT, rather than at the level of
single neurons.

In terms of information theory, the problem
confronting the auditory system is the transfer of
maximum information from multiple auditory
sources to their neuronal representations.
Information about sources forms a ‘convolutive
mixture’ in the acoustic waveform at the eardrum.
Here, each sound source is convolved with a filter
function that corresponds to the effect of the external
ear on sound from a particular region of space [26];
sound sources are further processed by a series of
filters in the ascending pathway to PAC. In terms of
ICA, the multiple-source problem can be solved when
the characteristics of the mixing filters are known
(essentially, a form of ICA that is not completely
‘blind’). The PT could operate on the information from
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Fig. 2. Sounds analysed in the planum temporale (PT). The PT is
involved in the analysis of sounds with complex spectrotemporal
structure where there are multiple frequency components that change
over time. This is shown in these spectrograms that show the frequency
spectrum of the sound at one eardrum as a function of time. 
(a) 1 s sample of speech. (b) 10 s sample of classical orchestral music.
(c) 1 s sample of amplitude modulated noise moving quickly around the
head, similar to the sound of an insect.
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PAC in such a way by accessing information about the
characteristics of these auditory filters acquired as a
result of experience [27]. In addition to the mixing
filters, we propose that the PT also has access to
information about previously experienced sound
objects. The filter and object properties might be
stored locally in the PT or in other cortical areas.
These properties are also key components of other
biologically plausible models. For example, in
predictive coding [28] they would be described as
feedback ‘predictions’ that allow computation of the
source properties of natural scenes.

Output of the PT would consist of segregated
spectrotemporal patterns corresponding to auditory
objects and their spatial characteristics. This output

would feed forward to areas that store information
regarding the ‘mixing filter’ and sound-object
characteristics, where it would be used to update this
stored information. Accordingly, because reciprocal
‘top-down’and ‘bottom-up’processing are an
essential feature of the segregation process that we
envisage as occurring in PT, ours could be classified
as a generative model [29]. A core feature common to
generative models is plasticity – the capacity for
modification of the computational algorithm based
on experience.

Evidence for the model

Spatial perception
Auditory spatial analysis is the prototypical
application of our computational model (Fig. 3). The
PT or its homologues have been implicated in acoustic
spatial analysis in both electrophysiological studies in
monkeys [19,30,31] and functional imaging in
humans [16,17,32,33]. Recent functional imaging
experiments using broadband stimuli have
demonstrated PT activation when the computation of
sound movement requires segregation of the effect 
of movement from the intrinsic structure of the 
sound [16,32]. In this situation, a movement
trajectory could be computed in the PT by continuous
segregation of a spectrotemporal pattern that
corresponds to the original sound object from
movement-transformed versions of itself.

Elementary acoustic pattern perception
Evidence also exists for specific PT activation in the
processing of spectrotemporal patterns that are not
spatially determined, including harmonic complexes
[34], amplitude modulation [35], frequency
modulation [34,36] and sound sequences [37,38]. By
contrast, differential activation does not occur in PAC,
consistent with the primary cortex acting as a conduit
for further processing.

Environmental sound perception
The PT is engaged in processing a range of naturally
occurring environmental sounds, including animal
cries and inanimate noises [17,39]. Voices are specific
examples of ethologically salient environmental
sounds for which stored templates might exist. When
contrasted with non-vocal sounds of similar frequency
distribution, activation of the left PT by voices could
reflect processing based on such templates [40].

Musical perception and imagery
The perception of music demands the capacity to
build and retain long-lasting abstractions of
spectrotemporal structures. Right-sided PT
activation typically accompanies the perception of
melodies (Table 1), and active tasks that involve
musical pitch recruit a frontal–temporal network,
which includes the PT (in normal subjects) [41].
A frontal–temporal network involving the PT is also
activated during musical imagery [42] and during
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Fig. 3. The computational hub in action: auditory spatial analysis. The spectrotemporal pattern at the
two ears results from convolution of the acoustic signal in space (in this example, a square-wave
amplitude-modulated noise, similar to the sound of a helicopter) with the head-related transfer
functions (HRTF) at the two ears (in this example, corresponding to a location above the subject, to the
right). Initial processing of spectrotemporal patterns, including comparison between the ears, occurs
in the ascending pathway to the primary auditory cortex (PAC). In the cortex, it is likely that multiple
neurons are required to encode a given position in space [30,67]. Our model proposes serial input
from PAC to planum temporale (PT), followed by further processing in the PT to compute the most
likely combination of sound objects and positions producing the binaural spectrotemporal pattern in
PAC. In performing the computation, the PT accesses learned information about the acoustic world (in
this example, the HRTF) stored locally or in higher cortical areas. Output from the PT comprises spatial
information that passes to the parieto–temporal operculum and inferior parietal lobule, and
sound-object information that passes to the temporal convexity for semantic processing.
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musical hallucinations [43], when subjects perceive
music in the absence of any musical stimulus. In the
case of music, therefore, the proposed initial
spectrotemporal analysis in the PT affords access 
to widely distributed and lateralized brain
processing mechanisms that operate over different
temporal scales.

Speech perception
The representation and updating of auditory speech
traces are necessary for phonological working
memory and speech production [5]. The PT has been
implicated in these processes in studies of both
normal and brain-damaged subjects [44,45]. It is also
activated by natural speech contrasted with
acoustically similar non-speech sounds [46], by
deviant or unpredictable verbal and nonverbal 
events [47–49], and in verbal self-monitoring [50].
These observations are consistent with the 
suggestion [5] that Wernicke’s area constructs a
transient representation of the spectrotemporal
structures embodied in spoken words, regardless of
whether these are heard or retrieved from lexical
memory (i.e. a phonological ‘template’). Such a role
would be crucial for distinguishing phonemes as
closely related spectrotemporal structures [36].
However, we do not argue that PT is necessarily the
primary storage site for such templates.

Other considerations

Attention
Attentional (‘top-down’) influences might modulate
PT computation via its connections to other
association areas (Table 1). Activation of the PT in
studies that specifically assess the effect of attention
[51] and in dichotic listening [52] might be
interpreted in this way. However, functional imaging
studies of auditory spatial and object processing 
have demonstrated that PT activation does not
depend on whether a task is employed [17]. Moreover,
one generator for the pre-attentive mismatch
negativity response in electroencephalography 
and magnetoencephalography [20] (an
electrophysiological correlate of ‘oddball’ or novel
stimuli) arises in the vicinity of the PT. We therefore
suggest that, although PT contributes to an auditory
attentional network, its computational role does not
depend on attention.

Cross-modal processing
Area Tpt of the macaque, a potential homologue of
the human PT, contains neurons that are responsive
to visual and somaesthetic, as well as auditory,
stimuli [53]. Cross-modal processing of visual motion
has also been demonstrated in the human PT [54].
Activation of the PT during reading [55] and
lip-reading [56] can be interpreted as examples of
cross-modal processing that involve access to
phonological spectrotemporal templates.

Auditory learning
Left PT activation in response to sign language in
prelingually deaf individuals [57] is consistent with
recruitment of the computational hub by an entirely
different sensory modality: a striking example of
plasticity. Our model predicts the bilateral
deactivation of the PT specifically associated with
short-term auditory learning that is demonstrated in
normal subjects [58], as such training could lead to
the establishment of stored templates for acoustic
targets, improvements in computational efficiency
and reductions in metabolic demands.

Lateralization
Lateralized PT activation during processing of
language and musical stimuli (Table 1, Fig. 1) is not a
specific feature of our computational hub model.
However, the model could accommodate lateralization
of processing determined by stimulus features [59,60]
or lateralized downstream cognitive processing.

Predictions

Figure 3 illustrates a scheme for the identification
and localization of single sound objects in space. One
of the most challenging tasks for the auditory system
is to execute this task for multiple objects, in the
‘cocktail party effect’ (where we perceive and attend to
the voice of one speaker when many speakers are
present). We predict a crucial involvement of the PT
in this task.

Our model is based on the properties of local
networks within the PT, and could be tested
experimentally using single unit recording in animal
homologues of PT, or depth-electrode studies in
humans. One core feature of the model that might be
examined directly in this way is the plasticity of unit
responses to spectrotemporal patterns.
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